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Densities for Receivers with Sauare Law Detectors

R, C. Emerson
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Abetract

The method of [ic and Slogert for finding the output prababiiLity density
characteristic function for receivers with square law envelope detections is
disueas,•d and a parallel development is given for the square law rectifier.
Procedurea are then outlined for determining the probability density functions
directly, i.e., without solving the eigenvaiue problem or inverting the charac-
teristic function. The method depends on expanding the density functicn in
an orthonornal series tie coefficients of which are expressed in terms of
cumulants which in turn are obtained from the system kernel by straightforward
quadratures.

As an exrmple to illustrate the procedure, a receiver with Gauasi&n I.F.
and Gaussian audio frequency pasn characteristics is treated in detail, and
the output probability density functions are found for various sinusoidal input
signal strengths and I.F. vs. audio oardwidth ratioa.
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List of Symbols

E! (t) I.F. !nnut voltage

EW) I.F. output (detector input) voltage

E2 (t) Detector output kaudio input) voltage

SO(t) Audio output voltage

F ifM) I.F. voltage transfer function

f i(t) Fourier transform of Flf(4)

F (6)) Audid voltage transfer function

f (t) Fourier transform of F (W )

g(uv) System kernel defined by euation (5)

hj(u) jth normal eigenfunction of g(u,v)

UEgenvalue corresponding, to hj .u)

ei(t) Component of Ei(t) along hi(x) (see equation lC',)

S(t) Signal component of Ei(t)

Ni~t) Noise component of Eikt)

sa(t) Signal component of ej(t) (see equation (13))

Ij(t) Noise component of eapt) (see equation (14))

00 I.F. input noise power per unit frequency

4 ,Characteristic fA.nction of the probability density of E 0t)t ' 0

S 3igna! P-wer at input to tht detector

N Noise Power at inrut to the detector
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List of Symbols (Cont.)

X Signal-to-noise power ratio at input to the detector

Y Audio output voltage measured in units of N

Kn or Kn(t) n h cumuldnt tdefined by equation (33))

gaIt uv) n times iterated kernel kdefined by equation (35))

a Bandwidth measure for Gaussian IoF. amplifier

S)Bandwidth measure for Gaussian audio amplifier

ON

af Noise Bandwidth of I.F. amplifier

H W a-h Hermite polynomial ýdefined by equation (74))

NO Center frequency of the I.T. amplifier

KI 5 +N First output cumulant for signal plus noise

K N First output cumulant for noise alone

K2S+N Second output cumulant for signal plus noise

N Second output cumulant for noise alone

S S0 Detectability criteria (seeequations 57•' and (80()
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"ntroduction

The upper limit on radio receiver performance is often determined by

the ability of the ejuoiment to detect week signals in the presence of system,

or pre-system noise. Since this noise is bdsically random in its fine struc-

ture, the degree of signal canta•ination and consequent e-uipment malfunction

must be described statistically, i.e., by means of expectations, probability

distributions, etc. Considerdble attention his been given in recent years to

statistical anaIysi3 of electronic circuitry arnd particularly, because of the

common re,.uirement for "detectors" in systems, to non-linear circuits. Some
(I• idd~ton,(2)

of the names in the literature associated with th.s work are Rice, (1) Middleton,

North,(3) Van Vleck, ý2) Marcum, (4) Goudsit, (5) Fubini, (6) and Johnson(') as

well as Smith&7) in Englond to mention only a few.

S. 0. Rice, "Mathematical Analysis of Kandom Noise," Bell Syst. Tech.
Jour., 23, 282 tl#1,44); 25, 46 (1945).

k2) J. H. Van Vleck and D. Middleton, "Theory of the Visual vs. Aural or Meter

heception of hddar Signals in the Presence of Noi~e," R.R.L. Report No. 411-86,
Kay 11".

It D. 0. North, "Analysis of the Factors Which Determine Signal/Noise Discri-
minat:_on in jar," R.C.z.. Technical Report PTR 6-C, June 1943.

(41 J. I. Marcum, A Statistical Theory of Target Detection k Pulsed Radar:
M.athematical Appendix, The RAND Corporation, Research Memorandum RM-753, July 1,

.A"Y48.

(5) S. A. 3oudsmit, "Stetistics of Circuit X Ise," R.R.L. Report No. 43-20, Jan.
I43.

o) E. G. Fubini ,nd D. C. Johnson, "3inal-to-Noise Ratio in A.M. Modulated

Receivers," Proc. I.R.L., Vol. ft, Dec. 1,j4, pp. 1461-1467.

(7) R. A. Smith, "The Relative Advwtxges of Coherent and Incoherent Detectors:
A Study of Their Output Noise Spectra under Various Conditions," T7E Technical
Note No. 15.
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The springboard for this paper is a work by F. Kic and A.J.F.,Slegert

w-ho have investigated the statistical effects of uncorrelated Gaussian (whlte"

noise with anw without signal for a systfm comprising an I.F. amplifier, a

square law envelop-. dtector, and an audio amplifier. They have derived an exact

formula for the first rrobabiity distribution of the output voltage for such a

system-an important result cecusc of' its generality both with respect to I.F.

and audio pass band cnaracteristics, and the unrestricted form of tne signal

wave assumed. Their expression for the probdbility distribution is, however,

unsuitable for most engineering applications, firsjt, because it depends on

invertirig a rather complickted characteristir function which may not be possible

in closed form, and, secondly, the explicit expression for the characteristic

function depends on the solution of a certain eigenvalue problem which none

but the most experienced in dealing with integral equations are equipped to

solve.

Tnis paper provides u means for using the Kac-Siegert meLhod in its widest

generality without the necessiLty of finding eigenvalues, %nd without dealing

with the characteristic function at all. It depends on the fact that the

cumulants of the output distribution are rather sLmply related to the system

operator so that by employing any of the well-known orthonormal systems for

expanding aensity functions, i.e., Or;n-Charlier, Laguerre, etc., one may

compute the output Lrobaoility distributil.oý to any desired degree of accuracy

by straightforward techniues. The procedure is illustrated ir Se'-ion IV

for a system in which the I.F. und audio amplifiers possess Gaussian band pass

characteristics of arbitrary bandwidth.

S) M. Kac and A.JAF. Siegert, "On. the Theory of Noise in Radio Receivers

with Square Law Detectors," J. Aoplied Physics, Vol. 18, pp. 383-3-Y7, April,
1A47.
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This treatment will depart from that of Kac and Siagert in one importiant

respect. As was previously mentioned, th.eir detector is an "envelope detector,*

that is, it consist3 of a square law rectifier followed by an appropriate

smoothing circuit to attenuate the high frequency resicue. Thds action is

accomplished mathe%,-tic 1ly by resolving the input voltage into sine and cosine

components wnich are then squared and added to give the output voltage. This

approach appears to be a carry-over from the original derivations of the detector

output probability density where no separate audio amplifier is considered.

Since tris treatment is to Include audio filtering as a specific function, the

smoothing circuitry referred to above will be included in the audio filter.

This point of view leads to a great simplification of the mathematics. In

additizn, the theory will be slightly more flexible since it will be possible

by re.inving the audio amplifier completely to determine the probability density

function for the detector alone, i.e., without smoothing circuits, or to obtain

tht result of Xac and 3iegert by modifying the audio filter so as to account

for the additional smoothing action.

'4 , , l I I I I ' I I I
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Section I

The ystem Operator

Figure 'l) illustrites tei system under investigation.

Square Audio or
E(t) ifE(t) low E ( video Eo(t))- amplfier detector amplifier

fif ( ) fa(t)

Fif (W) Fa ((W)

Fi~gure kl)

The I.F. d•rlifier is characterized by the voltaie-freuuency function

Fifkw) and/or its Fourier transform fir(t) ; similarly for the audio anýlifier.

The voltage, E(t), applied to tte s uare law detector is given by the familiar

formula, 00

E(t) - flt(t-x) Ei(x)dx ki)
-a,

2,
The output, E 2t), of the detector is obtained by squaring the inrut. It may

be expressed by the double integral formula,

E kt) / fif~t-x)Ei(x) Ei'ýyl fif(t-y)dxdy ý2)

-00

This voltage is applied to the audio amplifier. The output volage of this

aurlifier is given by the linear operation,

oW / a(t-x)E2(x)dx
-00
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On substituting from equation (2) and after making certain substitutions

of variables, one obtain- the following formula for the output in terma of

the input voltage:

-00Eo•~ -• it-U)_ g'u,) E (t-v) dudy (4,) "
0m

where,

00

gýuv) / fif(u'-) fa(Z) fif(v-z) dz (5)

Equation (4) r.h.s. is tne system operator, and the function g(u,v), the system

Kernel.

One comment concerning the limits of integration seems in order at this

point. The realizability of the I.F. and audio filters implies their inability

to predict; consequently, the functions fif and fa vanish for negative argaients

and so the inte*'ral. may be extended over the entire time domain. Notice also

that the so-called "high freý,uency terms" produced by frequency addition in

the detector have not been neglected. They are included in E (t) to -.he extent

they are passed by the audio amplifier. This residue need not be given special

attertion in the der,'vation of the characteristic function, bit may be discarded

lster on if desired.

Expansion of the System Kernel

The nexV. step in the development is to expand the function g~u,v) into

the uniformly convergent bilinear series,

gku,v) - X h h(1) h3 (v) (6)

where the h4 (x) and X. are respectively the jth normal orthogonal eigenfunction
'I 3

-•.
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and corresponding eigenvalue of the integral equation

00

X * / g(XjY) h(y) 4r,(7)
1 2

For such an expansion to exist it is sufficient, first, that g(u,v) be

symmetric which can be verified by appealing to'equation (5), and secondly,

that gku,v) be positive seni-definite. On referrini. to equation (4) it will

be verified that g(u,v) will be positive semi-definite if for all input func-

tions, E., the output is non-negative. Since the detector output is always

non-negative, one has as a sufficient condition for positive semi-definiteness

on g(u,v) that,

fa(X)• 0 (8)

This restriction on the audio amplifier characteristic may actually be too

stringent for particular I.F. amplifiers, but it will be carried along in order

to guarantee the validity of the general result.

On substituting equation (6) into equation (4) the system operator reduces

to

Eot = )J [e J(t)]2(t (9)

where 0o

e(t) - / Ei(t-x) hi(x) dx tlO)

-00

The input voltage is now expressed as the sum of signal plus noise, viz.,

Ei(t) a 3(t) + W(t) (11)
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so "h2t Aor t;e outnut one irets,

where

3 5(t(t) h%(x) dx (13)

-00

dnAd
O0

It. - / Nkt-x) h (x) dx k14)

We are now in a position to find the characteristic function for E OM

for tne case where N(t) is an uncorrelated Gaussian process.

The Characteristic Function

For any fixed t, let N(t) be normally distributed. Further, let

Nit 1) N (Y' 0- (t 1-t21 (15)

where its the noise roier per unitft an4 '(t '. t 2 ) is a unit impulse
1 2

function at t -.tV2 Then, by e.uatioln (1), for any fixed t , the q (t)

will be normally distributed. And, furthermore, since the functions h are

orthogonal,

- (16)

where k is the Kronecher delta. Consequently, for any fived t.ime, t, the

vector rit) defined by,

n(t)- [•ITt), I 2(t) ,...](17)

has a multidimensional probability distribution given by,

n ( t)2

dPV(.t] TT 4-ý
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The characteristic function 1(5,t) of S (t) is now given by,

- tv+ 2 iIT )2

-%

which ny be integrated by cmpleting the squares, giving

2 2o

'[- 21 X.w ] 1/2 0 200 1- 2 (20)

This is the result for the square law rectifier corresponding to that

of Kac and Siegert for the square law envelope detector. Their result c-an be

obtained directly from ti hs by observing that in the case of the envelope

detector for eact variate of noise present in the input an extra independent

variate of noise corresponding to the Oout of phase" voltage component is

added to the output. And, since the vj are independent, this has the effect

of multiplying the characteristic function, equation (20), by its value for

noise alone. Under these conditions the noise power per cycle must be split

equally between the two components. For Sac and Siegert the noise power per

cycle is taken to be unity, so letting o 1/2, s(t)2 - p(t) + q 2(t) -

a2 * 02 (in their notation), and changing the exponent of the term in brackets

from -1/2 to -1, yields their formula.

Th4 Gase of No Audio, Filter

Tho output probability density function, P'(E 0 ), can be derived in this

"ese by inverting the characteristic function. Here we have,

F (ae) -1I (2.1)

Fa W

faX k*SX - 0) (221
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From equation (5) we get,

gfu,v) ifku) f ity) (23)

and fro& equztion t6), we see that there is but ane eigenvalue, \, and eigen-

Sfnctiin, h(u", These bre Pound to be,

00

f- )dx 24)

-00

and,
fit(u) £5

h(u) -

The znversion o; tre characteristic function is then found to be:

st) 2

e - cosh No] ?~J
a (26)

0

Now, 0X and st)2 X are respectively the r.m. s noise power and signal power

entering the detector. Lhen, normalizlng L.ese variable-m , follows:

"t " (27)

0

(28)SV0
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we get,

P, - Y cosh • (21

This result --ay be wvrilfed eisily by taking the distribution for the

noise voltage, n, into trne detector to be,

2

dPkr.) e - (30)

For rectification in the detector, make the i,.abstitution,

Y -,+)2 031)

This uves, e t t t 2

dPkY) -212, 
2

.*ha.ch rec'ucei; iedl tely to equuiti4cxr 9.
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Section II

The C••ulants for the Output Probability Density

In principle, the probability density function for the output voltage

can be obtained from the characteristic function, equation (20), by a Fourier

inversion. However, except in very special cases, i.e,, infinitely wide audio

pass band, it is a very difficult problem to find the X and hj required to

determine J(ý,t) explicitly, let alone to accomplish the inversion. The alter-

native is to find suitable methods for approximating the density function

directly.

There are several well-,known ortbhnormal systems suitable for approximating

probability density functions. Two of these systems, the Grem-Charlier and

the Laguerre, are discussed in Section III.

Particularly simple coefficients for these approximating series arlas

when they are expressed in terms of the cumulants of the probability density

function. The cimulants, Kn, are defined by the following identitys

where J(J) is the characteristic function.* So, taking the logarithm of

e(q,t), quation (20), and expanding in power. of i1, we get,

K n(t).- (2$ 0) n (n 2 jn + (200 )-l n.' • n , 1(t) 2 (34)

See M. G. Kendall, "The Advanced Theory of Statistics," Vol. 1, for a Oouplete
discussion of cumulants and their relation to statistical approximation methods.
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The n times iterc-.ed Kernel, n(u,v), Is defined by,

9 n (u#V) "a . gWu,•, ;!xltx2 .... •nV) 05)dn_ ,•

-00

By virtue of equhtion ý6) it is easily verified that,

/"g (u,u) du 036)

-00

and

X i n .s(t) 2 _//s(t~u) gn(u,v) S(t-v) du dv 037)
-0,}

th
Thus, the formula for the n-- cumulant becomes,

aD aDnr: /2 2
f 00 -00

which may be evaluated by straightforward quadratureso

Now, equation 038) can be derived by a more direct rrocesso This is acco.-

plished by noting thdt hn is equal to a certain •lgebraic expressaion involving

the first n moments, each of which can be evaluated by raising E ot) as expressed

in euation t4) to the appropriate power and then averaging.

The formulas for the higher moments become progressively more complicated

because of the large number of ways noise can be paired with noise, but on

forming the required algebraic combination, equation (38) results. Since this

procedure is extremely tedious, a derivation of equation (36) alonp these lines

will not be included. It is mentioned, however, because it illustrates that the

condition of positive semi-definiteaiess inposed on the Kernel gku,v) via eauation

(8) to insure uniform convergence of the Mercer series, equation (0, in
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xtheu~tic~lly sufficient but not necessary, ana does not constitute a

restriction on the vaiidity of equation 038). In fact, equation (38) is

valid for any kernel if the corresponding system output voltiaýge has moments up

to and including the n--. This will be the case in any practical receiver,

1L38,

d

)n4
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Section III

Two Urthanormal Systems

For approximating the output probability density functions two different

orthonormal systems mre especially useful. The first, the Weber-Hermite

system which gives rise to the Gram-%,hxrlier series, type A, is particularly

suited to those function3 which apinroximate the nomal. In terms of this

series, P'(Eo) is given by,*

P E a (J) (' '. (39)
0 2 J0o 2 r

where

01)(X) a ~~= T Il(40)

and

0

S1 2 ft 0 (41)

a3 K3

32

For density functions which approximate the Rayleigh distribution, the

following series** which derives from the orthonormal system of Laguerre is

useful:

See Kendall, ibid, and Marcm (4) for discussions of convergence, methods
of grouping terms, evaluation of additional ai and further estail..

In this form, the series seems to be due to Marcum (4), which see for evalua-
tion of additiona1 li and details concerning the derivation.J
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x_ co ,., K.E
P' (E°) I 1 ,o{• (42)

,..here x 12

'dx

and

•o " ( " "

25 - (44)

2 2----'

"2

-3IK 1
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Section IV

The Case of Gaussian I.F. and Audio with Sinusoidal Signal

To illustrate the method consider the case Jn which the IF. has a Gaussian

pass band of width a, centered at the very high frequency, f . Similarly let
0

the audio have a Gaussian rass band of width,), centered at zero frequency

(see Figure (2)),

I F amplifier-= ..

-I --I "

a._0

-fo 0 fo

Figure (2)

Thus, 
0 2 (f-f 0) 2

i 2 e 202 202

F (fL - e 2)2 (46)

and, -(2TT)2 x2
aT

fif x) - 2 o2 e Cox WoX (47)

2
2m-(2))

f a(x) - ý2e (40)
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By means of equitions (5) and (35) we calculate,*

41Y log t° (u-v) 1
i 27 4

angtu,v) -- 2 Ix-u- -2 u

4wr C-os F 1uV 2 Y2 3•/2• •o (uit -_. ( '' u-v)2  3. u,)}•o
2 0 , o... e - l [1+ 2 1+ 1 2
.(uoV),- exp (+2V + (7v (51)

24 +Y

1. - 2Y24x (u..V) )
T~l ý2y), ý2 + )(23 473..

where,

vm~ (52'

Fromr' thee equstions we get,

/ g(u,u) du - 2aT - Lf (53)

-00

g(uu) du 2oar 2 1 
(54)

-a,

[g(u,u) du 3 2 6f3(5

These formulas have been ootaincd by neglecting the terms in cos 41 (u+,) which

represent the high freT Aency residue. They are vanishingly small for sufficiently
large Ldb
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Where the noise bandu.idth of thp T1.F. Is -'*fined to be,

6ff 06)

2 L W~ o f o

Let ttne input eigtnal c.-oltage bt,

**-*+' I- Cos 40t(ý57)

where S :19 the .verag~e power. j~h i-i 15 ,3o the average signal power applied

to the detector because of e,4u~tion (45)). We t.r~er c~tlculate,*

JrS(t-u) g(u,v) 3(t-v) du dv .583

// S(t-u) g2 1Uv 3C-l d 'f 3(59)

// (t-u) g3(u,v) S (t-,v) du~ dv - f

K,2 -zi

K&1 1 (63

237 -2+y

Again, rimitting thae nip,) fre4;uency terms in cos bi (2t-u-v).
0%
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where

N $oa (64.)

is the average noise power at the input to the detector, and

x S (65)
N

is the signal-to-noise power ratio at the input to the detector.

The output probability density functions are now expresse,; in terms of

the orthonormal series discussed in Section III. They have been plotted in

Fijures (3), (4) atnd (5) for selected, valuu of the input sign~l-to-noise ratio

and bancdw.dth ratio Y. As was pointei out in the preceding footnotes the

treatment in t:,Is section neglects the high frequency detector residue terms.

C.nae.;uently, on letting Y pass to zero we do not obtain the case of infinite

audio bandwidth discussed in Section L. Rither wp obtain in the limit the well-

.:cw density finction for the square law envelope detector with no additional

.audio filtering. These curves are labeled *-and the notation Y-0 is reserved

f!r the curves of equation (29).
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Section V

General Formula for K for the Gaussian System

We will now der4 e the Mercer series, equation (6), for g(u,v) and obtain

the general expression for the ni- cmulant. This will serve as a check on

form•las (61) through (63).

To start with, write,

42 cow(T (2" 2 (U 2W

g(u'v) 0- 2 11,24_ .2.2 (66)

and make Vi~e wabotitutions,

U 2" x (67)

u, - (68)

t +2 2 _1(69)

T1727

Then equation (66) becomes,

4vO2 cos wo(UV) x(2-•Z) -t2-2 +-2 2tXY

g(u'v) - 0 - (70)

We now make use of Kehler's formula,* i.e.:

At2 ix2*y2) - 2tx y

e- 1-t Zi H f(x ) H (71)
. -1_ eet2 J Wsoj 8 J(13), 2J189.

/tSao Watson, Joral of the Lonon Math. S•,Vol. 8 (1933), 189.
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and after expanding coo 1v (u-v), we obtain the eigenvnlue t'airs,

1_ -~ 
(72)

dndi the corresponainr pdi.rt of 4-Ienfunctioivg,

6) ~ ~2 j/ 2y~(3

Here HjIkx) is the Hermite pciynov-ial deflned by,

7)H (x) - (-,) a2 dj 2(74)

19) ~ZS~n, C~n -2(2q4tn)D 7

For tb* sivmwods biput sipal d.fUA by e~atlam W5) $:i

ro) sfCkt 00 ~j 'Cos W i(t-x) h4 S,C (x) dx

N2w 0 for even (76)

-3for 3odd
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INW usify neglecting, the high

This result is vwlid for o sufficiently high to Justy

frequency re~idueo

On summin,- with equations (72) and (76) we get,

_ . sj(t) 2 - z S )n S t)2 C sCn C() 2

J-0

n-i 2

Finally, by means of equations 34, 56, 64, and 65 we get for the n--

cumuluant,

!!in 2+ - n

wh., ch reduces for n-i, 2, and 3 to equations (64-, (6,211 ,nd respect I' itsy.
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Section VI

Sioal Detectl ~-.b* At, for the yausslan Sys5tem

1hwson and L'hlenbeck" in discussing v.•rious detection criteri3 suggest

a "deflection cr~terisn" which is baied on re.s'Jring the chanlre in the average

output brought Lbout by the signal. It is euggosted that this elhninge should

be comparable to tUe standard deviation due to noise alone in oW-er that the

signal oe "detectable." In te.rns of the cumulants, then, we have for detee-

tebility,

K, (79)0
2

helated to this crsterion is one obtainea by using the stanAard devtatlon Of the

signal plus noise, i.e0,

IS+ N

S - - O)

Th•.e 2iant_•• ha:ve been investi;,,ted by Smith for a variety of fIltar

hapfe and detector characteristics. By direct substitution from equations ý61)

and kt 2) we ret for thr 3,ussia&ý-squre law syoten,

S -X1l12 (81

02

s a X (82)

L. ia.escn 5.,J 3. E. Uhlenbe-k, "Threshold 3ignals," Rad. Lab. Series
No. 24, p. i1o
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For relatively narrow audio bandwidth, i.e.,Ylarge, which is the region

of in'terest for the reference, these expressions reduce to,

so /D (83)
211T4

.114 V2 Y_(84)

These are in agreement with the formulas given by Smith.

The "Ideal or Threshold Detector" provides another means for determining

signal detectability. With this device a "detection" is called if the output

voltage at any particular time exceeds a certain threshold. The level of this

threshold is then adjusted so that "false alarms", i.e., detections in the absence

of signal, are relatively infrequent. The probability of a detection at any

instant can then be written,

00

Pd(X M t) P,(S X) d• , (85)

And is necessarily an increasing function of signal strength.

Karcum(4) hhs considered the case of a square law envelope detector with

video integration, i.e., successive samples of the detector output are numeri-

cally Averaged rather than applied to a filter. The probability density function

for this averaged output is given (in our notation) by the formula,

a-1 E

E -a)-0 .X
P,(Eo,X,a) - 2) a_1 (2aF-j (86)

where a is the number of samples averaged. The cu~ulants for th13 distribution

are given by the for-mula,



n n-1
a

2N

K 3 2 (90)

We now set

a - (91.)

and nrt!1e tha- fairly good agreement exists between th'use eua ntts rnd thoes

for tne Gaussian dud.-.o aystei. Consequently, can be interpreted as Ve

approximate numter of sampl*3 averaged by the audio filtar.0

It is now possible tc obtain • fzirly good fi-."t approximation to tho

p ;robability of det-actior, P (,#T)p by reforrino to the approp"iate cures in

Sreference (4.).

i RCE: J ,•

S This is not an exact tr~atwm*n bec-ause the •viNii1ty 10neit.y Nncatlaf fW
the Gaussian system annwt. be pAt pvecisely into the for* of equation 'S• •a.Lss

0. However, the mean values ci ¢orrespond *xactly, the varimag MW he
correct to vithin a fae-or or leos than 4 in X. and 4h asymoait-y will be in
error by a factor 1eL t*n 4/3 in K3 and •"itn X

I
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